Lipid rescue for bupivacaine toxicity during cardiovascular procedures

Christopher Gallagher,1 Jonathan M. Tan,2 Crista-Gaye Foster2

1Associate Professor and Director of Residency Training Program, Department of Anesthesiology, Stony Brook University Medical Center, Stony Brook, New York; 2Resident, Department of Anesthesiology, Stony Brook University Medical Center, Stony Brook, New York, USA

Introduction

Bupivacaine toxicity is a recognized complication of procedures done under local anesthetic infiltration. While local anesthetic toxicity is rare, it is potentially catastrophic and life-threatening.2 A 20% lipid emulsion has been used to resuscitate patients after bupivacaine overdose or inadvertent intravascular injection.2,3 While the use of lipid emulsion for local anesthetic toxicity has been reported extensively in the anesthesiology literature, it has not yet been reported in the cardiology literature. We report a case of local anesthetic toxicity resulting in pulseless electrical activity during an electrophysiology procedure that was successfully treated by infusion of 20% lipid emulsion.

Case Report

A 28-year old male from El Salvador (1.58 m, 55.8 kg) with no significant past medical history presented to a community hospital with a 3-month history of worsening shortness of breath, dyspnea on exertion, fatigue, nausea and vomiting. The patient denied chest pain, fevers, chills, recent febrile illness, sick contacts or palpitations.

The patient was found to be in sinus rhythm with complete heart block (3rd degree AV block) and a junctional escape rhythm of 30 bpm. He was then transferred to our institution where he underwent emergent placement of a right internal jugular transvenous pacing wire for temporary pacing. Further evaluation showed the patient to have a nonischemic cardiomyopathy with an echocardiogram demonstrating a left ventricular ejection fraction of 12% with severe global hypokinesia.

The patient was scheduled for a biventricular implantable cardioverter defibrillator (ICD) implant. In the electrophysiology suite, the patient had standard monitors placed and oxygen was delivered at 3 L/min via nasal cannula. Intravenous cefazolin 1 g was given as prophylaxis, with fentanyl 12.5 µg and midazolam 2 mg administered intravenously. During this period the patient was comfortable, awake and able to communicate.

During the procedure, the patient received a total of 50 cc of local anesthetic injection comprised of a mixture of 2% lidocaine and 0.5% bupivacaine to the left subepicardial region to facilitate left axillary venous access and construction of a subepicardial pocket for the device. The heart rate and blood pressure remained stable during injection of local anesthetic. Soon after obtaining axillary venous access, the patient complained of dizziness but with no changes in blood pressure, heart rate or pulse oximetry. Several minutes later he exhibited generalized seizure activity with severe tonic-clonic activity. Initially, midazolam 1 mg IV and then lorazepam 2 mg IV was used to treat the seizure while a bag valve mask was used to support ventilation. The patient remained hemodynamically stable during this episode. Urgent anesthesiology consultation was requested and the patient was intubated without complication. Subsequently, the patient was noted to have pulseless electrical activity and cardiopulmonary resuscitation was immediately started. Advanced cardiac life support protocol was initiated during which the patient received a total of 4 mg epinephrine, 40 U of vasopressin, 4 mg atropine, normal saline bolus and 200 meq sodium bicarbonate. An echocardiogram demonstrated no pericardial effusion. Bupivacaine toxicity was suspected as the cause for the cardiac arrest and the patient was given 2 units of 20% lipid emulsion. During the second dose of 20% lipid emulsion infusion, the patient regained his pulse and became hemodynamically stable. The pocket was closed after rinsing with antibiotics. A CT scan of the brain and a neurology consultation were unrevealing. Several hours after intubation and cardiac arrest the patient was successfully extubated.

Approximately one week later, the patient had successful placement of a biventricular ICD without complication. No bupivacaine was used. Several days later the patient was discharged home.

Discussion

The anesthesiology community has had extensive experience with local anesthetics as well as their complications.1,2,3,4 As a result, the use of lipid emulsion to rescue patients with local anesthetic toxicity is well known to anesthesiologists but perhaps less to cardiologists.2,5 The proposed mechanism of lipids actions is the “lipid sink” binding. In this proposed mechanism, the lipids “bind” the lipophilic bupivacaine and reduce tissue content. The first reported use of lipid therapy in patients was in 2006, with the successful rescue of patients undergoing regional blocks who failed to respond to conventional cardiopulmonary resuscitation after showing signs of local anesthetic toxicity. The patients were successfully resuscitated after treatment with lipid emulsion.6,7 Weinberg et al. demonstrated that intravenous lipid emulsion therapy increases resistance to, and enhances resuscitation of, rats and dogs exposed to local anesthetic overdoses.8,9 Importantly, while lipids have been shown to be helpful in treat-
ing lipophilic local anesthetics such as bupiva-
caine, levobupivicaine, ropivicaine, and
mepivicaine, they do not treat toxicity from the
more hydrophilic local anesthetics such as
lidocaine.

While no serum levels were drawn during
the resuscitation in this case, we are confident
the events were secondary to local anesthetic
toxicity due to the timing, the clinical presen-
tation consistent with local anesthetic toxicity
dizziness, hypotension, seizure activity, and
arrhythmia) and the immediate resuscitation
following administration of 20% lipid emul-
sion. It is well documented that bupivacaine
toxicity first manifests as central nervous sys-
tem disorders (tinnitus, a metallic taste in the
mouth, dizziness, seizures). Cardiovascular
signs follow the neurologic signs and include
bradycardia, dysrhythmias and, in severe
cases, asystole.

This patient received 50 cc of a combination
of 2% lidocaine and 0.5% bupivacaine (in a 4:3
ratio) yielding a total dose of 570 mg of lido-
caine plus 1.9 mg/kg of bupivacaine. The max-
imum local anesthetic dose for lidocaine is 4.5
mg/kg and the maximum dose for bupivacaine
is 2.5 mg/kg. Therefore, this patient received a
toxic dose of lidocaine plus a dose of bupiva-
caine approaching the upper limit.

In summary, this case represents the first
reported case of local anesthetic cardiotoxicity
with successful reversal using lipid emulsion
in the electrophysiology laboratory, a site that
frequently utilizes local anesthetics. Bupi-
vacaine toxicity and the use of lipid emulsion
as rescue therapy should be considered in all
cases in which symptoms consistent with local
anesthetic toxicity occur. Furthermore, all clin-
cal sites where local anesthetics are routinely
used should have 20% lipid emulsion readily
available and personnel should be educated
regarding this medication. Published evidence
to date suggests that lipid rescue for presumed
local anesthetic toxicity should be considered
in prolonged cardiopulmonary resuscitation
when there is suspicion of local anesthetic tox-

References

1. Butterworth JF 4th. Models and Mechan-
isms of Local Anesthetic Cardiac Toxicity.
2. Brull SJ. Lipid emulsion for the treatment
of local anesthetic toxicity: patient safety
implications. Anesth Analg 2008;106:1337-
9.
3. Leskiw U, Weinberg GL. Lipid resuscita-
tion for local anesthetic toxicity: is it real-
ly lifesaving? Curr Opin Anaesthesiol
4. Groban L, Butterworth J. Lipid reversal
of bupivacaine toxicity: has the silver bullet
been identified? Reg Anesth Pain Med
5. Picard J, Meek T, Weinberg G, Hertz P.
Lipid emulsion for local anaesthetic toxic-
6. Picard J, Meek T: Lipid emulsion to treat
overdose of local anaesthetic: the gift of
7. Weinberg G. Lipid rescue resuscitation
from local anaesthetic cardiac toxicity. Tox-
8. Di Gregorio G, Neal JM, Rosenquist RW,
Weinberg GL. Clinical presentation of local
anesthetic systemic toxicity: a review of
published cases, 1979 to 2009. Reg Anesth
Local anesthetic-induced cardiac toxicity:
a survey of contemporary practice strate-
gies among academic anesthesiology
departments. Anesth Analg 2006;103:1322-
6.
Successful use of a 20% lipid emulsion to
resuscitate a patient after a presumed
11. Litz RJ, Popp M, Stehr SN, Koch T.
Successful resuscitation of a patient with
ropivacaine-induced asystole after axillary
12. Weinberg GL, VadeBoncouer T, Ramaraju
GA, Garcia-Amaro MF, Cwik MJ.
Pretreatment or resuscitation with a lipid
infusion shifts the dose-response to bupi-
vacaine-induced asystole in rats. Anesthe-
siology 1998;88:1071-5.
Lipid infusion accelerates removal of bupi-
vacaine and recovery from bupivacaine
toxicity in the isolated rat heart. Reg
14. Weinberg G, Ripper R, Feinstein DL,
Hoffman W. Lipid emulsion infusion res-
cues dogs from bupivacaine-induced car-
diac toxicity. Reg Anesth Pain Med