Trending Topic

< 1 min

Trending Topic

Developed by Touch
Mark CompleteCompleted
BookmarkBookmarked

This corrects the article: “Ioannou A. Evolution of Disease-modifying Therapy for Transthyretin Cardiac Amyloidosis. Heart International. 2024;18(1):30-37”. Two typography errors were included incorrectly due to an editorial error. In Table 1, “eplontersen” was incorrectly written as “eplomtersen”. This has been corrected in the text. In the section “Eplontersen”, the administration schedule should be written as […]

< 1 min

150/Abnormal impulse initiation and propagation in the electrically coupled heart failure ventricular myocytes

Y Wang (Presenting Author) - Zhongnan Hospital of Wuhan University, Wuhan, China; J Cheng - Zhongnan Hospital of Wuhan University, Wuhan, China
Share
Facebook
X (formerly Twitter)
LinkedIn
Via Email
Mark CompleteCompleted
BookmarkBookmarked
Copy LinkLink Copied
Published Online: Oct 3rd 2008 European Journal of Arrhythmia & Electrophysiology. 2019;5(Suppl. 1):abstr150
Select a Section…
1

Article

Background and objective: Abnormal impulse is a major trigger for ventricular arrhythmias in heart failure (HF). In the heart, myocytes are electrically coupled and mechanically stretched, how cardiac stretch and electrical coupling affects abnormal impulse initiation and propagation is poorly understood. Here, we investigated the impact of β-adrenergic stimulation and CaMKII activation, the two major pathological changes in the setting of heart failure, on abnormal impulse initiation in the electrically stretched HF ventricular myocytes. The capability of abnormal impulse propagation was also determined in electrically coupled ventricular myocytes.

Methods and results: A stretch-activated current source was used to represent the activation of stretch activated channel (SAC) current in ventricular myocytes and a coupling conductance model (Gc) was used to assess the electrical coupling of ventricular myocytes in the heart. We found that activation of SAC current consistently induced abnormal impulses in HF ventricular myocytes and these abnormal impulses were no longer inducible under CaMKII inhibition. However, abnormal impulses were still inducible by adrenergic stimulation even CaMKII was inhibited. In addition, fast pacing itself steadily induced EADs in the isolated and the electrically coupled myocytes. Interestingly, the EADs propagated between ventricular myocytes more readily than the normal action potentials.

Conclusions: Our results suggest that stretch current is an important trigger of abnormal impulses in HF ventricular myocytes and that β-adrenergic activation may proceed in concert with CaMKII activation in promoting abnormal impulse induction. Furthermore, premature excitation promotes EAD induction and these abnormal impulses are easy to spread out, even more capable than the regular action potentials. This HF-related electrical remodelling may explain the increased propensity of ventricular arrhythmias in HF where the increased myocardial stretch, CaMKII activity and sympathetic tone coexist.

2

Further Resources

Share
Facebook
X (formerly Twitter)
LinkedIn
Via Email
Mark CompleteCompleted
BookmarkBookmarked
Copy LinkLink Copied

This Functionality is for
Members Only

Explore the latest in medical education and stay current in your field. Create a free account to track your learning.

Close Popup