Home > News > 21/Epicardial adipose tissue causes greater conduction slowing than subcutaneous adipose tissue in neonatal rat ventricular myocytes
Read Time: 2 mins

21/Epicardial adipose tissue causes greater conduction slowing than subcutaneous adipose tissue in neonatal rat ventricular myocytes

Published Online: October 3rd 2021 European Journal of Arrhythmia & Electrophysiology. 2021;7(Suppl. 1):abstr21
Authors: T Hwang (Presenting Author) - Imperial College London, London; KHK Patel - Imperial College London, London; CS Liebers - Imperial College London, London; I Diakonov - Imperial College London, London; P Punjabi - Imperial College London, London; D Agha-Jaffar - Imperial College London, London; R Chowdhury - Imperial College London, London; NS Peters - Imperial College London, London; J Gorelik - Imperial College London, London; FS Ng - Imperial College London, London
Quick Links:
Article Information

Background: Obesity has been strongly associated with atrial and ventricular arrhythmias. This effect is, in part, mediated by epicardial adipose tissue (EAT), which has previously shown to have a pro-arrhythmic secretome. Therefore, we sought to confirm any paracrine effects of adipose tissue on myocardial conduction and tested the differential effects of human EAT and subcutaneous adipose tissue (SAT) on ventricular myocyte electrophysiology.

Methods: EAT and SAT harvested from 11 patients during cardiothoracic surgery were cultured to generate adipose tissue-conditioned media (Cme), and their secretomes characterised using adipokine arrays and ELISA. Conduction velocities in monolayers of neonatal rat ventricular myocytes (NRVM) were measured at baseline and at 2, 4 and 24 hours post-incubation with EAT-, SAT- and control-CMe.

Results: Referenced to baseline at 2 hours, NRVM exposed to EAT- and SAT-Cme recorded slower conduction velocities than control, though they were comparable decrements (-6.3 ± 3.4 cm/s and -4.5 ± 3.6 cm/s vs -1.0 ± 2.7 cm/s; p=0.0001 and p=0.014, respectively). At 4 hours, NRVM incubated with EAT-Cme demonstrated greater conduction slowing than with SAT-Cme (-10.9 ± 5.7 cm/s vs -4.2 ± 3.4 cm/s; p=0.0024). At 24 hours, further reduction in conduction velocity was observed, with EAT again inducing a greater effect than SAT (-15.1 ± 5.2 cm/s vs -6.4 ± 5.8 cm/s;
p=0.011). Electrogram amplitude, duration and fractionation exhibited no significant difference between all groups. There were no significant differences in the adipokine secretomes of EAT and SAT. Moreover, stratification of the study cohort by mean age and BMI, and the presence of cardiometabolic disease, demonstrated comparable adipokine profiles of EAT and SAT, respectively.

Conclusion: Acute exposure to adipose-Cme causes conduction slowing in vitro, which is more marked with EAT- vs SAT-Cme. These results confirm the arrhythmogenic effect of EAT, which is mediated, in part, by a paracrine mechanism. Future studies are required to determine the mediators of the paracrine effect and investigate potential therapeutic targets.

Article Information:

Further Resources

Share this Article
Related Content In Arrhythmia
43/Cardiac tamponade as a complication of transseptal puncture: associations and operatordependent variables during left atrial ablation at Barts Heart Centre
E Maclean (Presenting Author) - St Bartholomew’s Hospital, London; K Mahtani - St Bartholomew’s Hospital, London; C Butcher - St Bartholomew’s Hospital, London; N Ahluwalia - St Bartholomew’s Hospital, London; M Finlay - St Bartholomew’s Hospital, London; S Honarbakhsh - St Bartholomew’s Hospital, London; A Creta - St Bartholomew’s Hospital, London; A Chow - St Bartholomew’s Hospital, London; V Sawhney - St Bartholomew’s Hospital, London; V Ezzat - St Bartholomew’s Hospital, London; MJ Earley - St Bartholomew’s Hospital, London; M Dhinoja - St Bartholomew’s Hospital, London; S Sporton - St Bartholomew’s Hospital, London; MD Lowe - St Bartholomew’s Hospital, London; PD Lambiase - St Bartholomew’s Hospital, London; F Khan - St Bartholomew’s Hospital, London; SY Ahsan - St Bartholomew’s Hospital, London; RJ Hunter - St Bartholomew’s Hospital, London; RJ Schilling - St Bartholomew’s Hospital, London; O Sega - St Bartholomew’s Hospital, London Read Time: 2 mins

European Journal of Arrhythmia & Electrophysiology. 2021;7(Suppl. 1):abstr43

Introduction: Cardiac tamponade is a high morbidity complication of transseptal puncture (TSP). We examined the incidence and predictors of TSP-related cardiac tamponade (TRCT) for all patients undergoing left atrial ablation at our centre from 2016-2020. Methods: Patient and procedural variables were extracted retrospectively. Cases of cardiac tamponade were scrutinised to adjudicate TSP culpability. Adjusted multivariate […]

  • Copied to clipboard!
    accredited arrow-down-editablearrow-downarrow_leftarrow-right-bluearrow-right-dark-bluearrow-right-greenarrow-right-greyarrow-right-orangearrow-right-whitearrow-right-bluearrow-up-orangeavatarcalendarchevron-down consultant-pathologist-nurseconsultant-pathologistcrosscrossdownloademailexclaimationfeedbackfiltergraph-arrowinterviewslinkmdt_iconmenumore_dots nurse-consultantpadlock patient-advocate-pathologistpatient-consultantpatientperson pharmacist-nurseplay_buttonplay-colour-tmcplay-colourAsset 1podcastprinter scenerysearch share single-doctor social_facebooksocial_googleplussocial_instagramsocial_linkedin_altsocial_linkedin_altsocial_pinterestlogo-twitter-glyph-32social_youtubeshape-star (1)tick-bluetick-orangetick-red tick-whiteticktimetranscriptup-arrowwebinar Department Location NEW TMM Corporate Services Icons-07NEW TMM Corporate Services Icons-08NEW TMM Corporate Services Icons-09NEW TMM Corporate Services Icons-10NEW TMM Corporate Services Icons-11NEW TMM Corporate Services Icons-12Salary £ TMM-Corp-Site-Icons-01TMM-Corp-Site-Icons-02TMM-Corp-Site-Icons-03TMM-Corp-Site-Icons-04TMM-Corp-Site-Icons-05TMM-Corp-Site-Icons-06TMM-Corp-Site-Icons-07TMM-Corp-Site-Icons-08TMM-Corp-Site-Icons-09TMM-Corp-Site-Icons-10TMM-Corp-Site-Icons-11TMM-Corp-Site-Icons-12TMM-Corp-Site-Icons-13TMM-Corp-Site-Icons-14TMM-Corp-Site-Icons-15TMM-Corp-Site-Icons-16TMM-Corp-Site-Icons-17TMM-Corp-Site-Icons-18TMM-Corp-Site-Icons-19TMM-Corp-Site-Icons-20TMM-Corp-Site-Icons-21TMM-Corp-Site-Icons-22TMM-Corp-Site-Icons-23TMM-Corp-Site-Icons-24TMM-Corp-Site-Icons-25TMM-Corp-Site-Icons-26TMM-Corp-Site-Icons-27TMM-Corp-Site-Icons-28TMM-Corp-Site-Icons-29TMM-Corp-Site-Icons-30TMM-Corp-Site-Icons-31TMM-Corp-Site-Icons-32TMM-Corp-Site-Icons-33TMM-Corp-Site-Icons-34TMM-Corp-Site-Icons-35TMM-Corp-Site-Icons-36TMM-Corp-Site-Icons-37TMM-Corp-Site-Icons-38TMM-Corp-Site-Icons-39TMM-Corp-Site-Icons-40TMM-Corp-Site-Icons-41TMM-Corp-Site-Icons-42TMM-Corp-Site-Icons-43TMM-Corp-Site-Icons-44TMM-Corp-Site-Icons-45TMM-Corp-Site-Icons-46TMM-Corp-Site-Icons-47TMM-Corp-Site-Icons-48TMM-Corp-Site-Icons-49TMM-Corp-Site-Icons-50TMM-Corp-Site-Icons-51TMM-Corp-Site-Icons-52TMM-Corp-Site-Icons-53TMM-Corp-Site-Icons-54TMM-Corp-Site-Icons-55TMM-Corp-Site-Icons-56TMM-Corp-Site-Icons-57TMM-Corp-Site-Icons-58TMM-Corp-Site-Icons-59TMM-Corp-Site-Icons-60TMM-Corp-Site-Icons-61TMM-Corp-Site-Icons-62TMM-Corp-Site-Icons-63TMM-Corp-Site-Icons-64TMM-Corp-Site-Icons-65TMM-Corp-Site-Icons-66TMM-Corp-Site-Icons-67TMM-Corp-Site-Icons-68TMM-Corp-Site-Icons-69TMM-Corp-Site-Icons-70TMM-Corp-Site-Icons-71TMM-Corp-Site-Icons-72